Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 23(3): e13349, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38638060

RESUMO

3D printing is an additive manufacturing technology that locates constructed models with computer-controlled printing equipment. To achieve high-quality printing, the requirements on rheological properties of raw materials are extremely restrictive. Given the special structure and high modifiability under external physicochemical factors, the rheological properties of proteins can be easily adjusted to suitable properties for 3D printing. Although protein has great potential as a printing material, there are many challenges in the actual printing process. This review summarizes the technical considerations for protein-based ink 3D printing. The physicochemical factors used to enhance the printing adaptability of protein inks are discussed. The post-processing methods for improving the quality of 3D structures are described, and the application and problems of fourth dimension (4D) printing are illustrated. The prospects of 3D printing in protein manufacturing are presented to support its application in food and cultured meat. The native structure and physicochemical factors of proteins are closely related to their rheological properties, which directly link with their adaptability for 3D printing. Printing parameters include extrusion pressure, printing speed, printing temperature, nozzle diameter, filling mode, and density, which significantly affect the precision and stability of the 3D structure. Post-processing can improve the stability and quality of 3D structures. 4D design can enrich the sensory quality of the structure. 3D-printed protein products can meet consumer needs for nutritional or cultured meat alternatives.


Assuntos
Tinta , Impressão Tridimensional , Alimentos , 60527 , 60450
2.
Braz J Anesthesiol ; 74(3): 844501, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583586

RESUMO

INTRODUCTION: Cardiac arrest or arrhythmia caused by bupivacaine may be refractory to treatment. Apelin has been reported to directly increase the frequency of spontaneous activation and the propagation of action potentials, ultimately promoting cardiac contractility. This study aimed to investigate the effects of apelin-13 in reversing cardiac suppression induced by bupivacaine in rats. METHODS: A rat model of cardiac suppression was established by a 3-min continuous intravenous infusion of bupivacaine at the rate of 5 mg.kg-1.min-1, and serial doses of apelin-13 (50, 150 and 450 µg.kg-1) were administered to rescue cardiac suppression to identify its dose-response relationship. We used F13A, an inhibitor of Angiotensin Receptor-Like 1 (APJ), and Protein Kinase C (PKC) inhibitor chelerythrine to reverse the effects of apelin-13. Moreover, the protein expressions of PKC, Nav1.5, and APJ in ventricular tissues were measured using Western blotting and immunofluorescence assay. RESULTS: Compared to the control rats, the rats subjected to continuous intravenous administration of bupivacaine had impaired hemodynamic stability. Administration of apelin-13, in a dose-dependent manner, significantly improved hemodynamic parameters in rats with bupivacaine-induced cardiac suppression (p < 0.05), and apelin-13 treatment also significantly upregulated the protein expressions of p-PKC and Nav1.5 (p < 0.05), these effects were abrogated by F13A or chelerythrine (p < 0.05). CONCLUSION: Exogenous apelin-13, at least in part, activates the PKC signaling pathway through the apelin/APJ system to improve cardiac function in a rat model of bupivacaine-induced cardiac suppression.

3.
Environ Int ; 185: 108555, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38458119

RESUMO

High-throughput identification and cultivation of functional-yet-uncultivable microorganisms is a fundamental goal in environmental microbiology. It remains as a critical challenge due to the lack of routine and effective approaches. Here, we firstly proposed an approach of stable-isotope-probing and metagenomic-binning directed cultivation (SIP-MDC) to isolate and characterize the active phenanthrene degraders from petroleum-contaminated soils. From SIP and metagenome, we assembled 13 high-quality metagenomic bins from 13C-DNA, and successfully obtained the genome of an active PHE degrader Achromobacter (genome-MB) from 13C-DNA metagenomes, which was confirmed by gyrB gene comparison and average nucleotide/amino identity (ANI/AAI), as well as the quantification of PAH dioxygenase and antibiotic resistance genes. Thereinto, we modified the traditional cultivation medium with antibiotics and specific growth factors (e.g., vitamins and metals), and separated an active phenanthrene degrader Achromobacter sp. LJB-25 via directed isolation. Strain LJB-25 could degrade phenanthrene and its identity was confirmed by ANI/AAI values between its genome and genome-MB (>99 %). Our results hinted at the feasibility of SIP-MDC to identify, isolate and cultivate functional-yet-uncultivable microorganisms (active phenanthrene degraders) from their natural habitats. Our findings developed a state-of-the-art SIP-MDC approach, expanded our knowledge on phenanthrene biodegradation mechanisms, and proposed a strategy to mine functional-yet-uncultivable microorganisms.


Assuntos
Fenantrenos , Poluentes do Solo , Metagenoma , Fenantrenos/metabolismo , Isótopos , DNA , Biodegradação Ambiental , Microbiologia do Solo , Poluentes do Solo/metabolismo
4.
J Agric Food Chem ; 72(11): 5526-5541, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38457666

RESUMO

Peptide self-assembly, due to its diverse supramolecular nanostructures, excellent biocompatibility, and bright application prospects, has received wide interest from researchers in the fields of biomedicine and green life technology and the food industry. Driven by thermodynamics and regulated by dynamics, peptides spontaneously assemble into supramolecular structures with different functional properties. According to the functional properties derived from peptide self-assembly, applications and development directions in foods can be found and explored. Therefore, in this review, the regulatory mechanism is elucidated from the perspective of self-assembly thermodynamics and dynamics, and the functional properties and application progress of peptide self-assembly in foods are summarized, with a view to more adaptive application scenarios of peptide self-assembly in the food industry.


Assuntos
Nanoestruturas , Peptídeos , Peptídeos/química , Nanoestruturas/química , Termodinâmica
5.
Addict Biol ; 29(2): e13361, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38380780

RESUMO

BACKGROUND: The relationship between fibrosis-4 (FIB-4) index and all-cause mortality in critically ill patients with alcohol use disorder (AUD) is unclear. The present study aimed to investigate the predictive ability of FIB-4 for all-cause mortality in critically ill AUD patients and the association between them. METHODS: A total of 2528 AUD patients were included using the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. FIB-4 was calculated for each patient using the existing formula. The patients were equally divided into four groups based on the quartiles of FIB-4. Multivariate logistic regression and Cox proportional hazard model were used to evaluate the association of FIB-4 with in-hospital mortality, 28-day mortality and 1-year mortality. Kaplan-Meier curves were used to analyse the incidence of 28-day mortality among four groups. RESULTS: FIB-4 was positively associated with 28-day mortality of AUD patients with hazard ratio (HR) of 1.354 [95% confidence interval (CI) 1.192-1.538]. There were similar trends in the in-hospital mortality [odds ratio (OR): 1.440, 95% CI (1.239-1.674)] and 1-year mortality [HR: 1.325, 95% CI (1.178-1.490)]. CONCLUSION: Increased FIB-4 is associated with greater in-hospital mortality, 28-day mortality and 1-year mortality in critically ill AUD patients.


Assuntos
Alcoolismo , Humanos , Estado Terminal , Cuidados Críticos , Razão de Chances
6.
J Hazard Mater ; 465: 133293, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141301

RESUMO

Autochthonous bioaugmentation and nutrient biostimulation are promising bioremediation methods for polycyclic aromatic hydrocarbons (PAHs) in contaminated agricultural soils, but little is known about their combined working mechanism. In this study, a microcosm trial was conducted to explore the combined mechanism of autochthonous fungal bioaugmentation and ammonium nitrogen biostimulation, using DNA stable-isotope-probing (DNA-SIP) and microbial network analysis. Both treatments significantly improved phenanthrene (PHE) removal, with their combined application producing the best results. The microbial community composition was notably altered by all bioremediation treatments, particularly the PHE-degrading bacterial and fungal taxa. Fungal bioaugmentation removed PAHs through extracellular enzyme secretion but reduced soil microbial diversity and ecological stability, while nitrogen biostimulation promoted PAH dissipation by stimulating indigenous soil degrading microbes, including fungi and key bacteria in the soil co-occurrence networks, ensuring the ecological diversity of soil microorganisms. The combination of both approaches proved to be the most effective strategy, maintaining a high degradation efficiency and relatively stable soil biodiversity through the secretion of lignin hydrolytic enzymes by fungi, and stimulating the reproduction of soil native degrading microbes, especially the key degraders in the co-occurrence networks. Our findings provide a fresh perspective of the synergy between fungal bioaugmentation and nitrogen biostimulation, highlighting the potential of this combined bioremediation approach for in situ PAH-contaminated soils.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Poluentes do Solo/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Biodegradação Ambiental , Solo , DNA , Microbiologia do Solo
7.
Crit Rev Food Sci Nutr ; : 1-17, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37218684

RESUMO

Condiments (such as sodium chloride and glutamate sodium) cause consumers to ingest too much sodium and may lead to a variety of diseases, thus decreasing their quality of life. Recently, a salt reduction strategy using flavor peptides has been established. However, the development of this strategy has not been well adopted by the food industry. There is an acute need to screen for peptides with salty and umami taste, and to understand their taste characteristic and taste mechanism. This review provides a thorough analysis of the literature on flavor peptides with sodium-reducing ability, involving their preparation, taste characteristic, taste mechanism and applications in the food industry. Flavor peptides come from a wide range of sources and can be sourced abundantly from natural foods. Flavor peptides with salty and umami tastes are mainly composed of umami amino acids. Differences in amino acid sequences, spatial structures and food matrices will cause different tastes in flavor peptides, mostly attributed to the interaction between peptides and taste receptors. In addition to being used in condiments, flavor peptides have also anti-hypertensive, anti-inflammatory and anti-oxidant abilities, offering the potential to be used as functional ingredients, thus making their future in the food industry extremely promising.

8.
J Genet Genomics ; 50(8): 589-599, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36870415

RESUMO

Cytokinins influence many aspects of plant growth and development. Although cytokinin biosynthesis and signaling have been well studied in planta, little is known about the regulatory effects of epigenetic modifications on the cytokinin response. Here, we reveal that mutations to Morf Related Gene (MRG) proteins MRG1/MRG2, which are readers of trimethylated histone H3 lysine 4 and lysine 36 (H3K4me3 and H3K36me3), result in cytokinin hyposensitivity during various developmental processes, including callus induction and root and seedling growth inhibition. Similar to the mrg1 mrg2 mutant, plants with a defective AtTCP14, which belongs to the TEOSINTE BRANCHED, CYCLOIDEA, AND PROLIFERATING CELL FACTOR (TCP) transcription factor family, are insensitive to cytokinin. Furthermore, the transcription of several genes related to cytokinin signaling pathway is altered. Specifically, the expression of Arabidopsis thalianaHISTIDINE-CONTAINING PHOSPHOTRANSMITTER PROTEIN 2 (AHP2) decreases significantly in the mrg1 mrg2 and tcp14-2 mutants. We also confirm the interaction between MRG2 and TCP14 in vitro and in vivo. Thus, MRG2 and TCP14 can be recruited to AHP2 after recognizing H3K4me3/H3K36me3 markers and promote the histone-4 lysine-5 acetylation to further enhance AHP2 expression. In summary, our research elucidate a previously unknown mechanism mediating the effects of MRG proteins on the magnitude of the cytokinin response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Metilação , Lisina/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Cromossômicas não Histona/genética
9.
J Sci Food Agric ; 103(8): 4211-4220, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36647322

RESUMO

BACKGROUND: Apple polyphenols (APs) with multiple biological effects have attracted extensive attention due to their broad opportunities for application. However, the use of APs is hampered by their instability in the face of environmental changes. Designing efficient carriers to improve the bioavailability of APs is the key to solving these problems. In this study, gelatin-chitooligosaccharide nanoparticles produced by the Maillard reaction (GCM) were fabricated to encapsulate AP, and the structure, antioxidant activity, and stability of the GMM-AP nanoparticle system were evaluated. RESULTS: The results of endogenous fluorescence spectrum, Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction, and simultaneous thermal analysis confirmed structural changes and interactions between GCM and AP. Combination with GCM did not adversely affect the antioxidant properties of AP, and the GCM-AP nanoparticles possessed superior temperature and storage stability. In comparison with fish gelatin-apple polyphenol nanoparticles, the GCM-AP nanoparticles were more stable at a wider pH range, and were more resistant to the electrostatic shielding effect of NaCl. After simulating gastric digestion, the particle size and polydispersity index (PDI) of GCM-AP nanoparticles were almost unchanged. CONCLUSION: The findings suggest that GCM nanoparticles loaded with AP could be used as good carriers with good antioxidant activity and stability. This study therefore provides a theoretical foundation for the development and industrial application of food functional factors. © 2023 Society of Chemical Industry.


Assuntos
Nanopartículas , Polifenóis , Animais , Polifenóis/química , Antioxidantes , Gelatina/química , Quitina , Nanopartículas/química , Tamanho da Partícula
10.
J Sci Food Agric ; 103(5): 2502-2511, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36606415

RESUMO

BACKGROUND: Surimi products occupy a large market in the food industry, and the gel performance is an important index to evaluate them. Thus, it is of great significance and practical value to find better food ingredients to regulate the structure and gel performance of surimi products. In this study, we used pea protein (PP) to restructure fish myofibrillar proteins (MPs) to achieve regulation of protein gel performance. RESULTS: PP could enhance MP gel performance in terms of compressive strength, water-holding capacity, and some texture parameters. This may be the result of an increasing ß-sheet content and a decreasing trend in the α-helix content, along with enhancements in hydrophobic interactions, nonspecific associations, and ionic bonds in a mixed PP-MP gel. The compressive strength, texture, and water-holding capacity of MP gel were positively correlated with surface hydrophobicity, active sulfhydryl, turbidity, and ß-sheet of the mixed PP-MP system. CONCLUSION: The findings suggest that PP can regulate the gel performance by remodeling the structure of MP. The regulation and correlation analysis between gel performance, structure, and physicochemical properties were explored and established to provide a theoretical basis for improving the quality of surimi products. This study will broaden the application of PP in the field of food processing and provide theoretical guidance for the manufacture of new surimi products. © 2023 Society of Chemical Industry.


Assuntos
Proteínas de Ervilha , Animais , Géis/química , Temperatura Alta , Proteínas de Peixes/química , Água/química
11.
Food Res Int ; 163: 112299, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596202

RESUMO

Freeze denaturation of protein caused by ice crystals is the main motivation for the quality deterioration of surimi during circulation and storage. This investigation aimed to cryoprotect surimi by adding antifreeze peptides from Takifugu obscurus skin (TsAFP) which can inhibit ice recrystallization, and to elucidate regulating mechanism. The comprehensive results showed that 4% TsAFP, half dosage of commercial cryoprotectant, had good cryoprotection on surimi by reducing the moisture variation and maintaining protein solubility of surimi at macro level, as well as inhibiting the degeneration and structure changes of myofibrillar proteins at micro level. Meanwhile, TsAFP could directly bind to the structural cavity of myosin, inhibit protein freezing-induced oxidation, maintain the spatial structure of myosin and water retention ability to preserve the surimi quality. This study helped better comprehend the protective mechanisms of antifreeze peptides in frozen surimi and was expected to provide a promising cryoprotectant for low-sweetness and low-calorie surimi.


Assuntos
Crioprotetores , Gelo , Congelamento , Crioprotetores/farmacologia , Crioprotetores/química , Miosinas , Proteínas Anticongelantes
12.
Food Chem ; 403: 134335, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36156396

RESUMO

Finding functional preparations that could improve the bioavailability of calcium is one of the keys to solving calcium deficiency. In this study, glycosylated peptides-calcium chelate with calcium absorption promoting activity, named XOS-CSPHs-Ca-MR, was prepared from Crimson Sapper scales protein hydrolysates (CSPHs) and xylooligosaccharides (XOS) via Maillard reaction. Results showed that amino nitrogen, carboxyl oxygen, and carbonyl oxygen atom were the primary calcium chelating sites. Remarkably, XOS-CSPHs-Ca-MR exhibited good calcium phosphate crystallization inhibitory activity, gastrointestinal stability, and could promote calcium transport efficiency in the Caco-2 cell monolayer. In vitro fermentation results showed that XOS-CSPHs-Ca-MR improved the gut microbiota structure of calcium-deficient mice. Its prebiotic effect was achieved by increasing the number of beneficial bacteria, boosting the production of short-chain fatty acids, and improving the colonization ability of microbiota. Therefore, this study could lay a foundation for the study of glycosylated peptide-calcium chelate as a novel calcium supplement with prebiotic effect.


Assuntos
Cálcio , Prebióticos , Humanos , Camundongos , Animais , Cálcio/química , Células CACO-2 , Cálcio da Dieta , Hidrolisados de Proteína/química , Peptídeos/química , Oxigênio
13.
Water Res ; 230: 119529, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36580804

RESUMO

Bioelectrochemical system (BES) can effectively promote the reductive dechlorination of chlorophenols (CPs). However, the complete degradation of CPs with sequential dechlorination and mineralization processes has rarely achieved from the BES. Here, a dual-working electrode BES was constructed and applied for the complete degradation of pentachlorophenol (PCP). Combined with DNA-stable isotope probing (DNA-SIP), the biofilms attached on the anodic and cathodic electrode in the BES were analyzed to explore the dechlorinating and mineralizing microorganisms. Results showed that PCP removal efficiency in the dual-working BES (84% for 21 days) was 4.1 and 4.7 times higher than those of conventional BESs with a single anodic or cathodic working electrode, respectively. Based on DNA-SIP and high-throughput sequencing analysis, the cathodic working electrode harbored the potential dechlorinators (Comamonas, Pseudomonas, Methylobacillus, and Dechlorosoma), and the anodic working enriched the potential intermediate mineralizing bacteria (Comamonas, Stenotrophomonas, and Geobacter), indicating that PCP could be completely degraded under the synergetic effect of these functional microorganisms. Besides, the potential autotrophic functional bacteria that might be involved in the PCP dechlorination were also identified by SIP labeled with 13C-NaHCO3. Our results proved that the dual-working BES could accelerate the complete degradation of PCP and enrich separately the functional microbial consortium for the PCP dechlorination and mineralization, which has broad potential for bioelectrochemical techniques in the treatment of wastewater contaminated with CPs or other halogenated organic compounds.


Assuntos
Clorofenóis , Pentaclorofenol , Pentaclorofenol/metabolismo , Anaerobiose , Clorofenóis/química , Bactérias/genética , Bactérias/metabolismo , DNA/metabolismo , Eletrodos , Biodegradação Ambiental
14.
Curr Res Food Sci ; 5: 1965-1975, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312881

RESUMO

Finding effective practical components to promote bone mineralization from the diet has become an effective method to regulate bone mass. In this study, peptides-calcium chelate derived from Crimson Snapper scales protein hydrolysates (CSPHs), and xylooligosaccharide (XOS)-peptides-calcium chelate prepared by transglutaminase (TGase) pathway, named CSPHs-Ca and XOS-CSPHs-Ca-TG, were used to explore the effects of glycosylation on their structural properties and osteogenic activity in vitro. Results showed that XOS-CSPHs-Ca-TG had better calcium phosphate crystallization inhibition activity with more unified structures than CSPHs-Ca, and could effectively maintain a stable calcium content in the gastrointestinal tract. Meanwhile, the glycosylated peptide-calcium chelate could accelerate the calcium transport efficiency in the Caco-2 cell monolayer, up to 3.54 folds of the control group. Moreover, XOS-CSPHs-Ca-TG exhibited prominent osteogenic effects by promoting the proliferation of MC3T3-E1 cells, increasing the secretion of osteogenic related factors, and accelerating the formation of intracellular mineralized nodules. RT-qPCR results further confirmed that this beneficial effect of XOS-CSPHs-Ca-TG was achieved by activating the Wnt/ß-catenin signaling pathway. These results suggested that glycosylation might be a promising method for optimizing structural properties and osteogenic activity of peptide-calcium chelate.

15.
J Agric Food Chem ; 70(44): 14148-14156, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36314886

RESUMO

Foodborne hydrolyzed antifreeze peptides have been widely used in the food industry and the biomedical field. However, the components of hydrolyzed peptides are complex and the molecular mechanism remains unclear. This study focused on identification and mechanism analysis of novel antifreeze peptides from Takifugu obscurus skin by traditional methods and computer-assisted techniques. Results showed that three peptides (EGPRAGGAPG, GDAGPSGPAGPTG, and GEAGPAGPAG) possessed cryoprotection via reducing the freezing point and inhibiting ice crystal growth. Molecular docking confirmed that the cryoprotective property was related to peptide structure, especially α-helix, and hydrogen bond sites. Moreover, the antifreeze peptides were double-faces, which controlled ice crystals while affecting the arrangement of surrounding water molecules, thus exhibiting a strong antifreeze activity. This investigation deepens the comprehension of the mechanism of antifreeze peptides at molecular scale, and the novel efficient antifreeze peptides can be developed in antifreeze materials design and applied in food industry.


Assuntos
Gelo , Takifugu , Animais , Cristalização , Simulação de Acoplamento Molecular , Congelamento , Proteínas Anticongelantes/química , Peptídeos/química
16.
Curr Res Food Sci ; 5: 1625-1639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36164327

RESUMO

The poor water solubility, bioavailability and stability of bioactive compounds have become the bottleneck restricting their wide application, thus developing a functional carrier to realize the efficient encapsulation and activity improvement of active hydrophobic substances has become a research hotspot. In this work, a functional glycosylated fish gelatin (called FG-COS conjugates) carrier based on fish gelatin (FG) and chitooligosaccharide (COS) via Maillard reaction was developed. The functional carrier exhibited good antioxidant activity and high encapsulation of curcumin (Cur). Enhanced antioxidant effect of Cur loaded in FG-COS conjugates (called FG-COS-Cur nanoparticles) was achieved, showing remarkable UV protection on Cur and enhanced intracellular antioxidant activity of FG-COS-Cur nanoparticles. Remarkably, FG-COS-Cur nanoparticles increased the cell viability of H2O2-induced oxidative damage Caco-2 cells, drastically reduced the levels of reactive oxygen species (ROS) and lactate dehydrogenase (LDH), and significantly increased intracellular antioxidant enzyme activities, which all exhibited a dose-response relationship. These findings suggested that the FG-COS conjugates with intrinsic antioxidant activity could effectively encapsulate Cur and improved bioavailability for hydrophobic active molecules in functional food field.

17.
Sci Total Environ ; 844: 157158, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35798101

RESUMO

The electrochemical activity of bioelectrochemical systems (BESs) was proven to be dependent on the stability of electroactive biofilms (EABs), but the response of EABs based on real wastewater to external disturbances is not fully known. Herein, we used real wastewater (beer brewery wastewater) as a substrate for culturing EABs and found that current generation, biomass, redox activity and extracellular polymeric substances (EPS) content in those EABs were lower as compared to EABs cultured with synthetic wastewaters (acetate and glucose). However, the EABs from the beer brewery wastewater showed moderate anti-shock resistance capability. The proteins and humic acid in loosely bound EPS (LB-EPS) exhibited a positive linear relationship with current recovery after Ag+ shock, indicating the importance of LB-EPS for protecting the EABs. Fluorescence and Fourier transform infrared spectroscopy integrated with two-dimensional correlation spectroscopy verified that the spectra of the protein-like region of LB-EPS changed considerably under the interference of Ag+ concentration and the CO group of humic acid or proteins was mainly responsible for binding with Ag+ to attenuate its toxicity to the EABs. This is the first study revealing the underlying molecular mechanism of EABs cultured with real wastewater against external heavy metal shock and provides useful insights into enhancing the application of BESs in future water treatment.


Assuntos
Substâncias Húmicas , Águas Residuárias , Biofilmes , Matriz Extracelular de Substâncias Poliméricas , Metais
18.
Sci Total Environ ; 844: 157196, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35810886

RESUMO

Microbial communities with extracellular electron transfer (EET) activity are capable of driving geochemical changes and cycles, but a comprehensive understanding of the key microbiota responsible for EET in complex soil matrices is still lacking. Herein, the EET activities, in terms of maximum current density (jmax) and accumulated charge output (Cout), of 41 paddy soils across China were evaluated from the exoelectrogenic properties with a conventional bioelectrochemical system (BES). The jmax with a range of 8.85 × 10-4 to 0.41 A/m2 and Cout with a range of 0.27 to 172.21C were obtained from these soil-based BESs. The bacterial community analyses revealed that the most abundant phylum, order, and genus were Firmicutes, Clostridiales, and Clostridum-sensus-stricto 10, respectively. Bacterial network analysis displayed the positive correlations between the majority of electroactive bacteria-containing genera and multiple other genera, indicating their underlying cooperation for the EET. Partial least squares regression (PLSR) model showed remarkable performance in describing the EET activity with 75 most abundant genera as input variables, identified that 32 genera were very important for governing the EET activities. Multiple linear regression (MLR) analyses further prioritized that the genera norank-c-Berkelbacteria and Fonticella were the key contributors, while the genus Paenibacillus was the key competitor against bacterial exoelectrogenesis in paddy soils. Moreover, the spearman analysis showed that the abundance of these keystone taxa was mainly influenced by the carbon content and pH. This approach provides a promising avenue to monitor the microbial activities in paddy soils as well as the links between microbial community composition and ecological function.


Assuntos
Microbiota , Solo , Bactérias , China , Elétrons , Solo/química , Microbiologia do Solo
19.
Biotechnol Adv ; 60: 108012, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35752270

RESUMO

The proliferation and global expansion of multidrug-resistant (MDR) bacteria have deepened the need to develop novel antimicrobials. Antimicrobial peptides (AMPs) are regarded as promising antibacterial agents because of their broad-spectrum antibacterial activity and multifaceted mechanisms of action with non-specific targets. However, if AMPs are to be applied sustainably, knowledge of how they induce resistance in pathogenic bacteria must be mastered to avoid repeating the traditional antibiotic resistance mistakes currently faced. Furthermore, the evolutionary constraints on the acquisition of AMP resistance by microorganisms in the natural environment, such as functional compatibility and fitness trade-offs, inform the translational application of AMPs. Consequently, the shortcut to achieve sustainable utilization of AMPs is to uncover the evolutionary constraints of bacteria on AMP resistance in nature and find the tricks to exploit these constraints, such as applying AMP cocktails to minimize the efficacy of selection for resistance or combining nanomaterials to maximize the costs of AMP resistance. Altogether, this review dissects the benefits, challenges, and opportunities of utilizing AMPs against disease-causing bacteria, and highlights the use of AMP cocktails or nanomaterials to proactively address potential AMP resistance crises in the future.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Bactérias
20.
Artigo em Inglês | MEDLINE | ID: mdl-35590475

RESUMO

Supermacroporous hydrogels have attracted wide concern due to their comfort and breathability in wearable health-monitoring applications. Size controllable supermacroporous structure and excellent mechanical properties are the most important for its application. However, they are normally fabricated by the cryogelation method, which is difficult to control pore size and maintain flexibility. Here, yeast fermentation-inspired gelatin hydrogels with a controllable supermacroporous structure and excellent mechanical properties were fabricated for the first time. The pore size can be controlled by adjusting the content of glucose and yeast, the ratio of glucose to yeast, fermentation time, and gelatin content during fermentation. The hydrogels demonstrated a controllable pore size range from 100 to 400 µm and rapid swelling characteristics. The mechanical properties were maintained by soaking ammonium sulfate solution for 12 h, showing maximum tensile and compressive strains over 300 and 99%, respectively. This novel approach can be easily applied to the preparation of supermacroporous and high ductility hydrogels under mild conditions. Furthermore, conductive hydrogels combined supermacroporous structures with conductive polyaniline and reduced oxidized graphene, and silver nanowires were prepared as wearable flexible sensors. The obtained sensors maintain well-distributed porosity, breathability, and mechanical flexibility, also showing excellent conductivity of 2.4 S m-1. Finally, the sensors were successfully applied to detect physiological signals and human-computer interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...